Parallel Implementation of the Yau and Lu Method for Eigenvalue Computation

نویسنده

  • Françoise Tisseur
چکیده

In this paper, parallel extensions of a complete symmetric eigensolver, proposed by Yau and Lu in ' l 993' are pre' sented. First, an overview of this invariant subspace decomposition method for dense symmetric matrices is g iven, fo l lowed by numer ical resul ts . Then' works are exposed in progress on distributed-memory implementation. The algorithm's heavy reliance on matrix-matrix multiplication, -oupled with Fast Fourier Transiorm (FFT)' should y ie ld a h ighly para l le l izable a lgor i thm. F inal ly ' pedormance results for the dominant computation kernel on the Intel Paragon are presented-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of a Symmetric Eigensolver Based on the Yau and Lu Method

In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu method. We rst give an overview of this invariant subspace decomposition method for dense symmetric matrices followed by numerical results and work in progress of a distributed-memory implementation. We expect that the algorithm's heavy reliance on matrix-matrix multiplication, coupled with FFT shoul...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

A parallel eigensolver using contour integration for generalized eigenvalue problems in molecular simulation

In this paper, we consider a parallel method for computing interior eigenvalues and corresponding eigenvectors of generalized eigenvalue problems which arise from molecular orbital computation of biochemistry applications. Matrices in such applications are sparse but often have relatively large number of nonzero elements, and we may require some eigenpairs in a specific part of the spectrum. We...

متن کامل

Computation of the linear Schrodinger Energy levels by Sinc method

Computation of the Schrodinger equation energy levels is very important in physics. For example we can use these levels to calculate the absorption coefficient and light refraction in a material as well as calculation of the interband and intersubband transition energies. Density of states of the system can also be obtained by using the energy levels. Thereafter we can determine that the system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJHPCA

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1997